Thinker™

Functional Description

Version 1.0

AR E B 2 B =B 2 2@ 2 R 2 #f #f 8f# 8# 2 f 8 8@ 8§ 82 &8 82 82 82 82 8 2 8
o O 2 0 2 O 0O 0 O O i = = = = = = = = = B b M R R R B B B B §
S22 S E S EE=sCo5 o E2oEe S35 8288 E RS
TORE-EX0T
o000 000000000000 000000000000 00— CHMET
o0 = = D= = BA= BB D= = D= D= D= D= D= D= D= D= D= I = D= D= D= A= D= BA= D= D= D= D= D=
O 0-0-0_0_0_0-0_0_0_0_0_0_0_0_0_0_0_0_0"_0_0_0_0_0_0_0_0_0_0_0_—9 00 o
ol FE LS LELELELE IS IS LEIELE IS LS LS LS LELELELELELELEIELEIE LS LS 48 LS LE LE ® 0 []
02 e G e G R R R G G R R G R G G [] E @
L L]
03 PR AB LB IS SIS IS IS IS IS IS IS IS IB IS IB IS IS IS IS IS SIS SIS IS IS S 4343 LS [] E []
o4 I R R R R T T T R T R R T T T B B BT T B Tt i T e] +3) E)
® = @
o5 B~ A i i i S~ B S i S T i~ i LE] = 8
L] 1w @
06 R R R R R R R S R R S R] +3 ® 1 (]
L L]
o7 R = = R R R = R R R R R R R R R R R R [] :c.
08 5454040 4E e e 4540404045 e85 45 404545 L0545 40404545 4545454545 4545 e - Lo
oE = @
oo LR AR IR LR LR LR IR IR IR IR IR IR IR IR LB IR LR LE LR LR IR LR IR IR IR LR LR LB 42 43 L8 e = []
10 = O IR OIS OO IR0 O RS RS OIS UL~ OIS U AL SO U . IO S JO. RS JO. [[0S .- S +3 []
L] 0 @
11 SSRGS SR GRS SR GE AR LR VS VR IS SIS FE SR G S GE LS SEGE S GE S S IS S IS &= ..11 ..
12 L= el et R il Ml St Rl Bl Sl Ml Sl el e R qui Jarlll il Sanit R il Mt Sl Ml Sl Sarill Ml Sarill el Hargl Harilt Yo [] []
L L]
13 LR IR Al i St i el Sl el el ol SRl i el ol i ol i Sl el el el Tl i]
14 LT AT LT D LT LD ST LD ST LD ST LD ST LD ST LD 4T LD 4D LD 4D LD D D D 2D D 2D ¢ 5 2D [] []
L] % @
15 PR AR R SE GE IR SR IR SR AR IR R IR R IR SR IR MR SR R AR R GE GE R MR T IR X R Ly ..g_g ..
20
16 B v e i e v v e~ v v S 4 JE——
ZIXEAT
17 R AR EE AR R S R VR B R S AR IS R IS R IR S 45 5 45 5 G5 45 45 5 5 5 b5 5 .O mar @
HVIE!
1% L el Bt Rl Rl Bacill Rl Bartll Sacill arlll Saril Bacilt Hargll Hacill Harill Haclll acilt Saril Racil Hacllt Racill Bacll Sacill Racill Saril Sacil el Sarill el Harl =
19 B o e o e o e e o e o U= R o O o e o e = e o O e
20 L=E AR =R Al e R AR R R e R el R R R e e A R e A =R At Aol e R e R it =
a1 eELELELE e eE e e e e eE e eE eEeE LB eE e e e B eE e e B eE B e LE e
2 R T R R R R T Rt e ety et * o
3 0E Wi BE B 01 B 012 B LI Bh B 0t B wEd Bt wEd Lh BE Lh whl Lh 0h B wh Bhd 3t ahd ot ok b3 Hayzx 100000
3 AR LR A LB B e B B e B A EB e VB B LB b LS e a8 el e e el i3 el 13 Qs 12
24 R e el et e el e eB el el el el el el e e e el e B e e et o et Wi et L
25 VR AR LR A LR LY LR R AE VR AR IR MR IE R LR IR LR AT LR R LR LE IR LR LR LR A R e u * min
Tayza 100000
a8 T R R R T T T R T - T B - e k] L5 Ouarcrs: s
b L0 0 LD 0 B0 0 000 B LT B B0 0k LD wh L0 wh LD wh LhD 0k LhD wh ah wh ah a ke ah ok gk s Sanepasy 3000000
27 CEAE LR LE B LE LB LE LB LE LB LE LB LB LB LB LB LB LB LB LB LB LB L LB e LB e s e i
i3 B T T T T R T T I e T e UYL O UYL O R O e R e O M A M O 0 M R M 0 M 45
0 AR R LR R E LB LB R LB LB LR 0B LB R L L e L L el L e e el e e e LB B w5 | momeynpsemenme
ORI OIS P JRUIL O IR AL RN R RS R IR .= RO .~ AL OISO JOUIS - JOCIS O J A IR R L . L83 zaxEar
[ER TR TR FPR SR FPR PR FER SR SPR SR FTR SR FPR SR SR SR SR FFR SR SR SFR SFR PR STR SFR FTR SFR STR S .
mizlzlzlzlElzlE|=lE|=lE|ElE|ElE|ElE|ElE|ElE|ElE|RlE|R|E|2]|E = BET
aro joojorjozfosfesfososforfosfooltoffi2)i31al1s5)16)l17 1810 20 21 |22 23 24 25) 2627 28|20 CH 3H HyaE
2P 9292920293939 0202029020202 02029202 0292920202939 9202029202
momeswzem 00 01 02 03 04 05 06 07 OB 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

© 2010-2022 Nikolai Varankine

Introduction

The Thinker™ is a math simulator instrument to perform visual examination of
numerous computational processes running concurrently.

A math model is described as a hierarchy of math modules. Each function or group of
functions inside a module can evaluate the result in its own computing thread. Modules
exchange computed values in asynchronous manner. Each math value can be visualized
at runtime as either a plain number or floating timeline graph.

Math Model Definition
Math model (a synonym of project in the simulator
@ Package (a sy y . .p) .) v B Archive
has external representation in XML format. Inside the
o @ Package

simulator, every loaded XML file is represented as a separate _
¥ ¥l summer

» 158l Library
I_1

package comprising one or more models.

_ Each model contains a set of parameterized

[summer
computing blocks (a synonym of fragment in the

simulator), data interconnections between fragments and

processor definitions. A model can include a library of

vy ¥ ¥ ¥ ¥ wT¥ T
i o
—
L)
—

components that can be reused across the project. An example E :Ei
of a project, named “summer”, is shown on the picture to the 2 Note
right. » i Note
))) b 3 Link

TE 101 A network connection (a synonym of signal in the b o brains

simulator) is simply a label, or a tag, that serves as a b o svg
reference to a common sort of virtual media to propagate b oo link
numeric values.

- A fragment contains a set of so-called “pins”, or gates, for numeric values to

B flow in or out of the fragment. Each pin references one signal. This way many
pins, having the same reference, are grouped together to form a separate network. A pin
also declares a direction of data flow through it. In other words, a direction defines

whether a particular pin is either a source or consumer of data floating through the pin.

An arbitrary textual note can be added at any point of the package hierarchy,

i Note

© 2010-2022 Nikolai Varankine

to add comments to the data or for any other purpose. A note has a classification mark
that helps to categorize messages.

5 Line Also every node in the hierarchy can have supplementary information defined
55 Text by a third-party. One sort of them, a standard of Scalable Vector Graphics

S Circle (SVG for short), is supported directly by the Thinker. Many element types of

SVG can be used to form an image of select nodes, including animations and
HTTP hyperlinks. Combined together, they form a complete picture, for any node of the
model hierarchy. An example for the “summer” model image is shown at the end of this
paragraph.

8 Library A library can be treated as a local storage of component patterns (a
synonym of module in the simulator). These patterns have no direct
connections in between, they get connected when they are instantiated in a model via
fragments. A pattern can be referenced by the fragment, provided with a processor to

use and a set of so-called “external” pins, as was said above. An

B Lib
= ey example of a computing module, named “summator-2” and
¥ 1> summator-2)]))
b £50 stored in the library, is shown on the picture to the left.
> 1 There are few types of patterns. Most important
v &2) _) _ I+ summator-2
is a computing module (on the right). It contains
1 : :
Te a special sort of hierarchy seen as a tree. Each node there
» 4 comwvarankint) B . . B
— evaluates a math function (“dot in circle” on the
* = Mote))) v i3
b 3 Text right). Arguments of these functions are taken either g 4
b 5 Circle from enclosed nodes or external pins declared as
b 3 Line data consumers. Top level node provides a computed value to a
b 2 Line pin declared as a source of data. A particular comare
> &2 formula of math function is declared in a form of
» £ comvarankinbr: Java class code (“Java cup logo” on the right), implementing a
» = Note special interface. This way any complex math function can be
» 3% Line computed.
b 057 Text
» 55 Circle A module having many input and output pins can be seen as a
» 5 Line math operator over the matrix.
4 ENDtE X . A
b = Note Another type of module is a so-called field. Simply put, it is a
» %Tm one-to-one interlink for connections, to perform elementary

© 2010-2022 Nikolai Varankine

https://www.w3.org/Graphics/SVG/

transitional operations over the data.

Modules can include other modules instantiated through their internal fragments,
provided that embedded modules don't create a module reference loop. This way

complex regular computing structures can be defined in a very compact form.

Each fragment, referencing the same module name, receives its own copy of a module,
so all modules of the same type appear distinct to the model and so don’t share the
same computed data unless they are connected at fragment level.

20

named as joints for short (picture on the left).

As was said above, both fragments and modules have one or more sets of pins,

Every module, like a fragment, defines a set of pins (picture on the left) within a
joint, called differently for the module as “internal” pins. These pins participate in
connections declared within a module.

> 1

¥ [28l Library
¥ I» summator-2

When a fragment instantiates a module, both “external”
and “internal” joints get connected by means of

v sl
v 31
o1
o2
3

v £} 0 enclosed pins. This feature allows data to flow in and
P out of the module. An example of internal pins is shown
o2 on the left. Another matched example for external pins -
> >3 on the right.

v 31
T A module can have more than one joint for the same set of
o2 connected signals. It is possible because a connection is rather a
> %3 tag than a real “pipe” with data. Unconnected joins don't participate

in runtime computation. All the border data flow performs through
pin-to-pin declaration at fragment level. At a module level, every pin features a direction
for data to flow across the border.

A main purpose to have more than one duplicate joint
is a possibility to present a different visual
representation of the module through the fragment.
One method is to show the full contents of the module.
Another variant is to display just a picture enclosed
into a selected joint - the so-called “symbol” of the
module (used on the picture to the right). There is a

© 2010-2022 Nikolai Varankine

5
e ————————————————————————————
third variant too, having no graphics at all, but just a text string enlisting pins of the
module. In a special case, no information will be shown at all. Last three variants
effectively hide the contents of a module when a concise representation is needed.
Selection of a participating joint is performed by name or through an “assembly”
parameter.

Math model build-up and computation

Described definition of a math model uses a hierarchy approach to benefit low efforts to
express what and how should be computed. In contrary to regular software, such a
definition cannot be used directly during computing time, because there is no hardware
to support these data structures directly. Very similar to integrated circuits production,
this form of hierarchy description must be flattened.

The process of conversion is performed automatically and

o v B summer
doesn’t require assistance from the researcher. All needed b
parameters and modes are already included in the math _ — .
model. After the model is built, it appears in another browser v £
(see picture on the right). It looks very similar to the original CE
hierarchy and even keeps all labels, but at the background it * 1
is really flat. The runtime model is composed of a very ») 2
limited number of element types. They are: processor, ¥ I summator-2
transmitter, receiver and math function. Other elements, v @3
despite the different picture in the tree, are simply virtual @1
containers, used for the purpose of easy navigation through © 2
the model. T 101
Tk 102

@3 A transmitter (red, on the left) includes a set of TE 103

receivers. Once a signal (data value) arrives at the # pl

transmitter, it is being replicated to every receiver. A receiver . CTey<typusiillpoueccop
1 (green, on the left), in turn, performs some elementary
checks over the incoming data. Then, under the test result, it may schedule a

computation request for the function.

This request arrives into the queue of the assigned processor. This processor (on
the left) isn't a real CPU core but a separate computing Java thread running

il

concurrently with other such threads. Once ready for the next request, a processor

© 2010-2022 Nikolai Varankine

applies selected modes of computation to the queue. They can be divided into two
groups: performance modes and accuracy modes.

A request at the front end of the queue triggers computation of the math function
(on the left) at the assigned node. Once computed, this result flows either to the

@ 3

upper level computing node or to the transmitter, when the node is the top level node.
This way a model computation process continues in the infinite dynamic sequence.

Some elements of the computing media can have data flow controls. They are: >
processors, computing blocks, models and the whole media. Their current ——
11

state is indicated by the background of the icon in the browser. Controls allow ==
|

to start, stop and pause computation for each such element individually. Of
course, top level controls override settings of embedded controls.

There are no limits on how many times a single model is built and run simultaneously.
Each converted model appears as a separate tree in the browser. Unused models can
be simply deleted to free resources to the application. While a model runs, a researcher
has an opportunity to continue other work with the application.

Visual representation of computation results

Generator of the model creates every node observable in a graph timeline tool. Any
computing node or transmitter/receiver node can be applied to a graph by simple drag
and drop operation. Displayed objects can be assigned presentation and conversion
features. The graph itself also has separate presentation settings and value range
settings for each axis. For the timeline axis, built-in control allows researchers to make a
snapshot. An example of the “summer” model at runtime is shown below.

This is a dynamic flow graph. The simulator refreshes the graph after every specified
interval. Values in millisecond range appear normal even for large screens having 4K
resolution. Setting a small interval value creates a smooth motion picture. A big interval
value may create flickerings but saves CPU/GPU resources and helps in total
performance.

A moment of “now” is shown on the right side of the timeline axis and is labeled as “0”".
All ticks to the left of it represent a state in the past, so they display labels as negative
time offset.

© 2010-2022 Nikolai Varankine

10 = .-t . " . .
a5 E . " - .. . - " . . . " . n "
00 = " L .
- ., . . . " . =,
05 == - " " " LI "] "
__| 1 1 | | I T I | | LI I B | | [1 | | I I | | 1 I.I | LI B B | | | I I | | [| | I I | | 1
0000 3000 7000 5000 5000 4000 -3000 -2000 1000 0

Result 3=1+2 W3 | Time ms

R o x ®

- = =
10 - HEdr B . x ., w _— .
- P R =L “ - I R L —
- b =
o5 - # R paaas At #
- PP " ® P " * = ot -
- * Furrras]
E
Zu e Ed # = = ME T
oo - - ; ® e * FTrY] * EgEE P e ®
05 = wrae % x " o PR * =
B — " Bl M x " " T s = x®
= wn # B e lAd B = M R * * E
| [I LI N B | | LI I | I LI | 1 | LI R | I LI | 1 | LI R B | I LI R B | | LI R | I LI | |x | 1
-0000 -B000 7000 -6000 -S000 -4 000 3000 2000 -1000 4]

Arguments 1 and 2 v+ V=2 ¥ | Time, ms

A time flow can be stopped, to show a snapshot. For this case, timeline ticks display
labels in current local time. A paused example of the same “summer” model is shown
below.

w It . " TR
- s " - . L] - u - " = o .
=] LI "
05 o " . . -~ - . =
5 : " " .
0o =" . " - ", o o " = . - . ' -t n ’
- " [l n L - " .
— » - » [] = = .
A o el T oo . " . . .
- . . -
— I T O O L A R o [rrrrp " [N N
A5:54 (00 556 000 A5:58 000 Af:00000
Result 3=1+2 3 Time, ms
10 - =, w ¥ 3 = n B3 P .
. = . . BEL e . *:““"" x:u#’“‘"“"‘ . . . ®
— " ++
0s - = - . LR B ¥ w F e «
R e u Bl . B L maeapteen
- Eo b u om u oy .
= WAEE
oo -, xxxﬂ§“ P Eooowq wegerow xxx wad . we I " o
= =
- w, ¥ * = * x
0E z 4+ HE P ® = i e * "
. - E = bt = £ = W
=% EEE Tt * = o * Ed wE #
T T T O TR T T T I L A B R
A45:54 000 A5:56 000 A5:58 000 Aa:000000
Arguments 1 and 2 - 2 Time, ms

A pause feature is available for individual graphs too. Also, every observed value can be
turned on and off, or simply deleted. For running values, it is possible to change

© 2010-2022 Nikolai Varankine

representation at every moment.

When a display of the value is paused, the model continues to compute it. To stop
computing, a dedicated node, which has flow control features, should be used instead.
When stopped, the graph will show no markings for this value on all graphs.

There are use cases when a graph is not needed. Researchers can have a look at node
properties instead. This form of representation allows researchers to read an accurate
digital value of the signal. When needed, a snapshot can be made as well. An example
for a top level computing node is shown below.

% Properties: 3 | pod
Mame: | 2
Type: | point
Value: | -0.4422444

Possible applications

This simulator is a convenient and easy tool to research, develop and debug complex
processes described as math functions, where it appears very difficult to obtain an
exact analytical formula for every part of a project. The Thinker allows researchers to
define a compact math model for the entire project and simulate exact behavior instead,
having a possibility to probe every model point.

As model data structure has a strong link to approaches used in integrated circuits
design, it can be applied to simulation of complex digital and analog circuits having not
trivial feedback loops. Final results can be mapped to a “silicon” design project with
minimum efforts.

The Thinker has been successfully used in proprietary artificial general intelligence
(AGI) research since around 2010.

© 2010-2022 Nikolai Varankine

Contacts for sale quotes and technical information inquiries

Scand Ltd.

Web: https://scand.com/ E
E-mail: info@scand.com

US: +1 (773) 831-4876

Poland: +48 (22) 219-98-19

Germany: +49 (212) 8807-9797

Belarus: +375 (44) 774-47-79

© 2010-2022 Nikolai Varankine

https://scand.com/
mailto:info@scand.com

